Statistical Analysis for High-Dimensional Data
-15%
portes grátis
Statistical Analysis for High-Dimensional Data
The Abel Symposium 2014
Richardson, Sylvia; Frigessi, Arnoldo; Vannucci, Marina; Langaas, Mette; Glad, Ingrid; Buehlmann, Peter
Springer International Publishing AG
03/2018
306
Mole
Inglês
9783319800738
15 a 20 dias
492
Descrição não disponível.
Some Themes in High-Dimensional Statistics: A. Frigessi et al.- Laplace
Appoximation in High-Dimensional Bayesian Regression: R. Barber, M. Drton et
al.- Preselection in Lasso-Type Analysis for Ultra-High Dimensional Genomic
Exploration: L.C. Bergersen, I. Glad et al.- Spectral Clustering and Block Models:
a Review and a new Algorithm: S. Bhattacharyya et al.- Bayesian Hierarchical
Mixture Models: L. Bottelo et al.- iBATCGH; Integrative Bayesian Analysis of Transcriptomic
and CGH Data: Cassese, M. Vannucci et al.- Models of Random Sparse
Eigenmatrices and Bayesian Analysis of Multivariate Structure: A.J. Cron, M. West.-
Combining Single and Paired End RNA-seq Data for Differential Expression Analysis:
F. Feng, T.Speed et al.- An Imputation Method for Estimation the Learning Curve
in Classification Problems: E. Laber et al.- Baysian Feature Allocation Models
for Tumor Heterogeneity: J. Lee, P. Mueller et al.- Bayesian Penalty Mixing:
The Case of a Non-Separable Penalty: V. Rockova etal.- Confidence Intervals
for Maximin Effects in Inhomogeneous Large Scale Data: D. Rothenhausler et al.-
Chisquare Confidence Sets in High-Dimensional Regression: S. van de Geer et al.
Appoximation in High-Dimensional Bayesian Regression: R. Barber, M. Drton et
al.- Preselection in Lasso-Type Analysis for Ultra-High Dimensional Genomic
Exploration: L.C. Bergersen, I. Glad et al.- Spectral Clustering and Block Models:
a Review and a new Algorithm: S. Bhattacharyya et al.- Bayesian Hierarchical
Mixture Models: L. Bottelo et al.- iBATCGH; Integrative Bayesian Analysis of Transcriptomic
and CGH Data: Cassese, M. Vannucci et al.- Models of Random Sparse
Eigenmatrices and Bayesian Analysis of Multivariate Structure: A.J. Cron, M. West.-
Combining Single and Paired End RNA-seq Data for Differential Expression Analysis:
F. Feng, T.Speed et al.- An Imputation Method for Estimation the Learning Curve
in Classification Problems: E. Laber et al.- Baysian Feature Allocation Models
for Tumor Heterogeneity: J. Lee, P. Mueller et al.- Bayesian Penalty Mixing:
The Case of a Non-Separable Penalty: V. Rockova etal.- Confidence Intervals
for Maximin Effects in Inhomogeneous Large Scale Data: D. Rothenhausler et al.-
Chisquare Confidence Sets in High-Dimensional Regression: S. van de Geer et al.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.
dimension reduction;sparsity;statistical genomics;statistical inference in high dimensions;high dimensional inference;penelised regression;thresholding;multiple testing;factor models
Some Themes in High-Dimensional Statistics: A. Frigessi et al.- Laplace
Appoximation in High-Dimensional Bayesian Regression: R. Barber, M. Drton et
al.- Preselection in Lasso-Type Analysis for Ultra-High Dimensional Genomic
Exploration: L.C. Bergersen, I. Glad et al.- Spectral Clustering and Block Models:
a Review and a new Algorithm: S. Bhattacharyya et al.- Bayesian Hierarchical
Mixture Models: L. Bottelo et al.- iBATCGH; Integrative Bayesian Analysis of Transcriptomic
and CGH Data: Cassese, M. Vannucci et al.- Models of Random Sparse
Eigenmatrices and Bayesian Analysis of Multivariate Structure: A.J. Cron, M. West.-
Combining Single and Paired End RNA-seq Data for Differential Expression Analysis:
F. Feng, T.Speed et al.- An Imputation Method for Estimation the Learning Curve
in Classification Problems: E. Laber et al.- Baysian Feature Allocation Models
for Tumor Heterogeneity: J. Lee, P. Mueller et al.- Bayesian Penalty Mixing:
The Case of a Non-Separable Penalty: V. Rockova etal.- Confidence Intervals
for Maximin Effects in Inhomogeneous Large Scale Data: D. Rothenhausler et al.-
Chisquare Confidence Sets in High-Dimensional Regression: S. van de Geer et al.
Appoximation in High-Dimensional Bayesian Regression: R. Barber, M. Drton et
al.- Preselection in Lasso-Type Analysis for Ultra-High Dimensional Genomic
Exploration: L.C. Bergersen, I. Glad et al.- Spectral Clustering and Block Models:
a Review and a new Algorithm: S. Bhattacharyya et al.- Bayesian Hierarchical
Mixture Models: L. Bottelo et al.- iBATCGH; Integrative Bayesian Analysis of Transcriptomic
and CGH Data: Cassese, M. Vannucci et al.- Models of Random Sparse
Eigenmatrices and Bayesian Analysis of Multivariate Structure: A.J. Cron, M. West.-
Combining Single and Paired End RNA-seq Data for Differential Expression Analysis:
F. Feng, T.Speed et al.- An Imputation Method for Estimation the Learning Curve
in Classification Problems: E. Laber et al.- Baysian Feature Allocation Models
for Tumor Heterogeneity: J. Lee, P. Mueller et al.- Bayesian Penalty Mixing:
The Case of a Non-Separable Penalty: V. Rockova etal.- Confidence Intervals
for Maximin Effects in Inhomogeneous Large Scale Data: D. Rothenhausler et al.-
Chisquare Confidence Sets in High-Dimensional Regression: S. van de Geer et al.
Este título pertence ao(s) assunto(s) indicados(s). Para ver outros títulos clique no assunto desejado.